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Proteins with selected sequences: A heteropolymeric study

J. Wilder* and E. I. Shakhnovich†

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
~Received 5 May 2000!

Protein sequences are expected not to be random but selected in order to form a stable native structure that
is kinetically accessible. Therefore our model contains a selective temperature in sequence space„see @S.
Ramanathan and E. Shakhnovich, Phys. Rev. E50, 1303 ~1994!# … to optimize the sequence for the target
conformation statistically. Replica calculations, which go beyond quadratic approximations in the field-
theoretical Hamiltonian, are presented. A phase diagram indicating the temperatures and selective temperatures
at which transitions to a frozen globule, i.e., the native state, occur is obtained. It is shown that going beyond
the quadratic approximation in the field Hamiltonian is very important, since it results in a significant change
of the phase diagram. Moreover, we suggest that a one-step replica permutation symmetry scheme is sufficient
to solve the model. In addition to this we present a result for the sequence correlation function along the chain
in the case of a short-ranged potential between the monomers. A correlation function between monomers that
form a contact in the native state is given depending on the temperature and the interaction parameter.

PACS number~s!: 87.15.Nn, 64.60.Cn, 64.60.Kw
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I. INTRODUCTION

Real proteins are composed out of a set of 20 differ
kinds of amino acids, which leads to a complex interact
potential between the monomers of the protein. Since i
impossible to deal with all these interactions analytically,
statistical-mechanical approach to protein folding is based
the investigation of simple models of heteropolymers. A fi
step in this context is an approach where the heteropolym
are made up of only two kinds of monomers; thus simi
monomers attract each other, whereas unlike monomer
pel each other. These two monomers represent hydrop
~A! and hydrophobic~B! amino acids. This simplified mode
for proteins still supports the important feature that the int
action energy is characterized by the sequence of the m
mers of the protein, which is an advantage over the indep
dent interaction model, where the interaction energies
considered as independent@2–6#.

The statistical mechanics of random copolymers cons
ing of two different kinds of monomers has been studied
previous papers@6–11#. Though different kinds of mono
mers repel each other, the monomers are not able to sep
into hydrophobic- and hydrophilic-rich macroscopic regio
at low temperatures because of the presence of chain con
tivity. The positions of neighbors are not independent, wh
leads to frustration.

It is suggested in@10# using the one-step replica symm
try breaking ansatz that the energy levels show a continu
spectrum for large values of the energy and a discrete s
trum for lower values. As in the independent interacti
model the system freezes into the lower part of the ene
spectrum if the temperature is decreased sufficiently.
ability, however, to fold into a kinetically accessible uniq
native state requires that the energy level of this state be
below the discrete part of the energy spectrum of the ch
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@14#. Such an energy spectrum can be designed by the in
duction of phenomenological models, which are motiva
by the idea of nonrandomness in proteins@2,12,13#. These
models favor native-state contacts energetically, thus pul
down the energy of the native structure.

There is, however, the caveat that the fundamental in
action in proteins is basically the same as in random het
polymers. According to@14# the ability of folding into
unique structure might be achieved by the optimization
the sequence of amino acids. In@1# the statistical-mechanica
properties of heteropolymers with designed sequences
investigated. The sequences are designed in the sense
canonical distribution in sequence space depending on
native conformation and a selective temperatureTs weights
the probability of the occurrence of a certain sequence. C
sequently some sequences are favored over others.

A phase diagram within Gaussian approximation for su
a heteropolymer depending on the selective temperaturTs
and the real temperatureT is calculated in@1# using a one-
step replica symmetry breaking ansatz. In the present w
we show that this phase diagram is changed significantly
going beyond the Gaussian approximation after investiga
the question as to whether a higher-order replica symm
breaking ansatz is necessary. The calculations show th
symmetry breaking ansatz of higher order reduces to a o
step replica symmetry breaking scheme.

Finally we present a sequence correlation function fo
short-ranged potential between the monomers. The de
dence on the strength of the interaction and the polymer
tion temperature is analyzed.

II. MODEL AND DEFINITIONS

Let the set$r i% represent the conformation of the heter
polymeric chain, where the indexi refers to thei th mono-
mer. Then the interaction term in the Hamiltonian reads

H5
1

2 (
i , j

N

bi j U~r i2r j !, ~1!
7100 ©2000 The American Physical Society
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PRE 62 7101PROTEINS WITH SELECTED SEQUENCES:A . . .
with N the number of monomers in the chain andU(r i
2r j ) a short-ranged potential. The binary interaction vir
coefficients are given by@15#

bi j 52@b01A~s i1s j !1xs is j #, ~2!

where the sequence of monomers is described by the s
variables$s i%. If monomer i is of type A, thens i51 and
s i521 in case that this monomer is of type B. Here we a
interested in the case that similar monomers attract e
other, which means that the Flory parameterx is smaller
than zero. The parameterA vanishes if the interactions be
tween similar monomers are equal, which is assumed in
following. To make sure that we are dealing with compa
globular states,b0 is set to negative values, which implies
certain overall attraction independent of the specific
quence of the monomers.

The set$r i
0% represents the conformation of the target

native structure for which the sequence of monomers sho
be designed. The potential energy of the chain consistin
the sequence$s i% folded to the native structure is given b

H0~$s i%!5
1

2 (
i , j

N

bi j U~r i
02r j

0!. ~3!

In the canonical ensemble of sequences in sequence s
according to this Hamiltonian we get the following distrib
tion function for sequence sets$s i% @14#:

P$s i%5
1

Z̃
expS 2

H0~$s i%!

Ts
D , ~4!

where the sequence space partition function is given by

Z̃5(
$s i %

expS 2
H0~$s i%!

Ts
D , ~5!

with the polymerization temperature or selective tempera
Ts . The sequence is treated as a frozen disorder; thus to
the free energy we have to average the logarithm of the
tition function in the conformational space over the probab
ity distribution given by Eq.~4!. So the free energy reads
l
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F52kT^ ln Z$s i%&av52kT(
$s i %

ln Z$s i%P$s i%. ~6!

^•••&av denotes averaging over all possible sequences$s i%
with a probability distributionP$s i%. The conformational
partition functionZ for a given sequence$s i% can be written
as

Z5(
$r i %

FexpS 2
H~$r i%!

kT D G)
i

g~r i 112r i !, ~7!

where the functiong for next neighbors along the chain
which ensures the connectivity of the chain in its stand
Gaussian form, is given by@16#

g~r j 112r j !5
1

~2pa2!~3/2!
expF2

~r j 112r j !
2

2a2 G , ~8!

with a the segment length in the discrete polymer model
The calculation of the free energy according to Eq.~6! is

very difficult, caused by the occurrence of the logarithm
this equation. To solve this problem we make use of
replica trick ~see, e.g.,@17#!, which requires the calculation
of the averagednth power of the partition function

^Zn&av5(
$s i %

E Dr j
ag~r j 11

a 2r j
a!expS 2

b0

T (
i , j

Ui j
a D

3expF2 (
a51

n

(
i , j

x

T
s iU~r i

a2r j
a!s j GP$s i%, ~9!

with Ui j
a 5U(r i

a2r j
a) andr i

a the position of thei th monomer
in replica a. SinceU is a nonlocal potential, we perform
Hubbard-Stratonovich transformation and calculate the tr
over s i . By setting

fa~R2!5
1

ba
E dR1U21~R12R2!ca~R1!, ~10!

whereca is the Hubbard-Stratonovich field in theath rep-
lica, ba equals2x/Ts for the zeroth replica (a50), and
2x/T for all other replicas, we get
^Zn&av5
1

Z̃
K E DFaDF0expF2 (

a50

n

baE dR1dR2Fa~R1!Fa~R2!

3U~R12R2!12 (
a,b50

n

babbE dR1dR18Fa~R18!U~R12R18!

3E dR2dR28Fa~R28!U~R22R28!Qab~R12R2!

2
4

3 (
a,b,g,d

babbbgbdE dR1dR18•••dR4dR48Fa~R18!U~R12R18!•••Fd~R48!U~R42R48!

3(
i

d~r i
a2R1!d~r i

b2R2!d~r i
g2R3!d~r i

d2R4!G L
th

. ~11!
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The thermal averagê•••& th includes the integrals over$r i
0%

and $r i
a%, which are not given explicitly in Eq.~11!. The

parameterQab describes the overlap between replicas an
defined as

Qab~R12R2!5(
i

d~r i
a2R1!d~r i

b2R2!. ~12!

Neglecting terms of orderx4, which means considering th
case of weak interactions and assuming ad function for the
short-ranged potentialU,

U~R12R2!5d~R12R2!, ~13!

Eq. ~11! can be evaluated by switching toQab variables,
which yields

^Zn&av5E DQab exp@2E$Qab%1S$Qab%#, ~14!

where the effective energy termE in the Gaussian approxi
mation is given by

E$Qab%5 lnE Dfa~k!expF2V (
a,b50

n

(
k

@badab

22babbQab~k!#fa~k!fb~2k!G , ~15!

with V the volume of the system andk is the wave vector.
The entropyS, which corresponds to the change of the va
ables, reads

S$Qab%5 lnK dS Qab~R12R2!2(
i

d~r i
a2R1!

3d~r i
b2R2! D D

th

. ~16!

For more details of the derivation of Eqs.~11! and ~15! see
@1#. Performing the integrals over the fieldfa(k) for a
50, . . . ,n in Eq. ~15! one obtains

E dk ln@detPab~k!#, ~17!

with Pab(k)5badab22babbQab(k) a symmetric matrix.

III. REPLICA SYMMETRY BREAKING
INVESTIGATIONS

In @1# the energy represented by Eq.~15! is calculated by
a one-step replica symmetry breaking scheme. The Pa
is

-

si-

type hierachical matrix for the order parameterQab is
formed by dividing all the replicas in groups by the follow
ing scheme: Two replicasa andb are in the same group i
they overlap on a microscopic scale, which implies that
overlap parameterQab(R12R2)5rd(R12R2) with r the
density of the system. The replicasa andb are in different
groups if they do not overlap, which m eans that the over
parameter vanishes, i.e.,Qab50.

This one-step replica symmetry breaking scheme imp
that the overlap between the replicas and the target con
mation does not vary continuously but can only assume
possible values. As a consequence there is a sharp ch
from the disordered globule or frozen globule to the tar
conformation, which depends on the selective tempera
and the real temperature. If a conformation in replicaa
folded into the target state, then we getQ0a5rd(R12R2)
andQ0a50 otherwise.

We are now going to show that this one-step replica sy
metry breaking scheme, which was introduced in@1# quite
intuitively, is the appropriate one for our model. It can
seen that a two-step replica symmetry breaking ansatz
duces to the one-step symmetry breaking scheme. This
plies that there is indeed a sharp change from the disord
or frozen globule to the target conformation.

The energy depending on the order parameterQab ac-
cording to Eq.~15! within the replica formalism is given by
@17#

E$Qab%5 lim
n→0

1

n
Tr ln@Pab#. ~18!

In the disordered or frozen state, when there is no ove
with the native state, this expression can be calculated
terms of the Parisi functiona(x) (x50, . . . ,1) asfollows
@18#:

lim
n→0

1

n
Tr ln@Pab#

5 ln@bs22bs
2r#1 lnFb22b2r2E

0

1

dx a~x!G2E
0

1 dx

x2

3 lnF b22b2r2E
0

1

dx a~x!1E
0

x

dy a~y!2xa~x!

b22b2r2E
0

1

dx a~x!
G .

~19!

The entropy termS is calculated in@3# within a Gaussian
approximation in terms of the Parisi function as
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S5Nn
3

4
a2E

0

1

a~x!dx. ~20!

Equation~19! and~20! lead to the following mean-field free
energy density, which has to be maximized@17# with respect
to the Parisi function:

f

n
5 ln@bs22bs

2r#1 lnFb22b2r2E
0

1

dx a~x!G2E
0

1 dx

x2

3 lnF b22b2r2E
0

1

dx a~x!1E
0

x

dy a~y!2xa~x!

b22b2r2E
0

1

dx a~x!
G

2
3

4
a2E

0

1

a~x!dx. ~21!

Now we are introducing in addition to the one step in t
Parisi function, which was already done in@1# and @10#, a
second step according to the scheme

a~x!50 for x,x0 ,

a~x!5a1 for x0<x<x1 ,

a~x!5a2522b2r for x1,x<1. ~22!

In contrast to the one-step replica symmetry break
scheme we get two additional parametersa1 and x1. After
insertion of the step function given in Eqs.~22! for the Parisi
function the free energy density reads

f

n
5 ln@bs22bs

2r#1 ln@b2~x12x0!a12x12b2r#

1F 1

x1
2

1

x0
G lnF b2x1~a112b2r!

b2~x12x0!a12x12b2r
G

1F12
1

x1
G lnF b

b2~x12x0!a12x12b2r
G

2
3

4
a2@~x12x0!a12~12x1!2b2r#. ~23!

Maximizing the free energy density with respect to the p
rametersa1 and x1 leads to two coupled mean-field equ
tions, which are calculated by setting the partial derivativ
with respect toa1 andx1 to zero. These equations are give
by
g

-

s

2
1

x1
2

ln@12x1~a1812br!#

1
x0a18~a1812br!

@12x1~a1812br!#@11x0a182x1~a1812br!#

3F 1

x1
2

1

x0
G2

1

x1

a1812br

11x0a182x1~a1812br!

2
3

4
a2b~a1812br!50 ~24!

and

F 1

x0
2

1

x1
G x1

12x1~a1812br!
2

1

x0

x12x0

12~x12x0!a1822brx1

2
3

4
a2b~x12x0!50, ~25!

with a185a1 /b. A simple algebraic analysis of these equ
tions shows that for a dense globular system the only
solution for x1 is x15x0 and thereforea15a2522b2r.
This result implies that the two-step replica symmetry bre
ing scheme reduces to a one-step scheme. The stability o
one-step replica symmetry breaking~RSB! solution was ob-
served in all microscopic studies of three-dimensional h
eroplymers@3–5,19#. One-step RSB suggests that the ene
landscape of a polymer is ‘‘rugged,’’ consisting of wel
defined local energy minima such that it is a consequenc
the topology of the three-dimensional space that ma
‘‘half-folded’’ states unfavorable: loss of energy due to se
ering some favorable contacts is not fully compensated
entropy gain in such ‘‘half-folded’’ states. This is in contra
to low-dimensional heteropolymers where the mean-field
lution features continuous RSB. Plotkinet al. @20# postulated
the possibility of a continuous replica symmetry breaking
their phenomenological description of random heteropo
mers based on the generalized random energy model. In
trast, our analysis based on themicroscopicmodel shows
that a stable mean-field solution for three-dimensional h
eropolymers features one-step replica symmetry breakin

IV. PHASE DIAGRAM BEYOND THE GAUSSIAN
APPROXIMATION

In @1# terms of higher order than quadratic in the fie
Hamiltonian given in Eq.~11! were neglected. Within this
Gaussian approximation a phase diagram was calculate
the following we show that this phase diagram is chang
qualitatively if terms of higher order in the fieldf are in-
cluded. Therefore we make the following perturbation e
pansion of the averaged replicated partition function@Eq.
~11!#:
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^Zn&av'
1

Z̃
K E DFaDF0expF2 (

a50

n

baE dR1dR2Fa~R1!Fa~R2!

3U~R12R2!12 (
a,b50

n

babbE dR1dR18Fa~R18!U~R12R18!

3E dR2dR28Fa~R28!U~R22R28!Qab~R12R2!G
3F12

4

3 (
a,b,g,d

babbbgbdE dR1dR18•••dR4dR48

3Fa~R18!U~R12R18!•••Fd~R48!U~R42R48!

3(
i

d~r i
a2R1!d~r i

b2R2!d~r i
g2R3!d~r i

d2R4!G L
th

. ~26!

Here terms of higher order thanf4 were neglected. It is useful to consider this expression in Fourier space, where it h
following form:

^Zn&av'
1

Z̃
K E DFaDF0expF2 (

a50

n

(
k

baFa~k!Fa~2k!12 (
a,b50

n

babb

3(
k

Qab~k!Fa~k!Fb~2k!G F12
4

3 (
a,b,g,d

babbbgbdE dk1dk2dk3dk4

3(
i

Fa~k1!e2 ik1r i
a
Fb~k2!e2 ik2r i

b
Fg~k3!e2 ik3r i

g
Fd~k4!e2 ik4r i

dG L
th

. ~27!

The first integral in Eq.~27! is a gaussian integral in the fields$f%. It has already been treated in@10# i.e., in @1#. A one-step
replica symmetry breaking scheme was applied to this problem, which is valid as we pointed out in the previous pa
The replica symmetry breaking parameter is referred to asx0 and within this scheme for the unperturbated free energy one
@10#

C~x0!5 ln~b!1
ln~122brx0!

x0
2

s

x0
, ~28!

wherer is the density of the system ands is the flexibility parameter or entropy per monomer defined bys5 ln(a3/v) with a3

the volume of a monomer andv the excluded volume. Soa3/v is the number of possibilities to place a certain monomer al
a given chain structure to achieve coincidence with this structure on a microscopic level. For further details on the mo
of the definition ofs see@10#.

In the second integral in Eq.~27! only terms that contain pairwise replica indices from the same group will survive, s
Qab(k) vanishes fora andb belonging to different groups. This leads to

^Zn&av'C~x0!2C~x0!K 16

3 (
k1 ,k2

(
(A,B)

(
a,beA;g,deB

(
i

babbbgbdeik1(r i
a

2r i
b)eik2(r i

g
2r i

d)@P21#ab
A ~k1!@P21#gd

B ~k2!L
th

2C~x0!K 16

3 (
k1 ,k2

(
(A)

(
a,beA;a,bÞ0

(
i

babbbs
2eik1(r i

a
2r i

b)eik2(r i
0
2r i

0)@P21#ab
A ~k1!

1

bs22bs
2r
L

th

, ~29!

with A and B denoting the different groups of replicas.P21(k) is the inverse Parisi matrix represented byp(k) for the
off-diagonal elements andp̃(k) for the diagonal elements:

p~k!5
g~k!

b@12g~k!x0#
~30!

and
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p̃~k!5
11g~k!~12x0!

b@12g~k!x0#
~31!

with g(k)52br. Suppose thatb andg do not depend onk. Then

^Zn&av'C~x0!2
16

3
C~x0! (

k1 ,k2

b4
n

x0
S n

x0
21D @~x021!x0p1x0p̃#2

3K (
i

eik1(r i
a

2r i
a)eik2(r i

g
2r i

g)L
th

2
16

3
C~x0! (

k1 ,k2

b4
n

x0

3@3x0~x021!~x022!~x023!p21x0~x021!~x022!~2p21pp̃!

13x0~x021!pp̃13x0p̃21x0~x021!~2p21 p̃2!#

3K (
i

eik1(r i
a

2r i
a)eik2(r i

a
2r i

a)L
th

2
16

3
C~x0!

n

x0
(

k1 ,k2

@~x021!x0p1x0p̃#
bs

2b2

bs22bs
2r

3K (
i

eik1(r i
a

2r i
a)eik2(r i

0
2r i

0)L
th

. ~32!

Therefore

^Zn&av'C~x0!2
4g2C~x0!~n2x0!n

3~12gx0!2
2

4C~x0!ggsn

3~12gx0!~12gs!

2
4g2C~x0!n@3g2~x0

325x0
219x023!2g~x0

214x023!1x012#

3~12gx0!2
, ~33!

which leads to the following free energy density of the system:

f

n
5C~x0!2

4g2C~x0!~n2x0!

3~12gx0!2
2

4C~x0!ggs

3~12gx0!~12gs!

2
4g2C~x0!@3g2~x0

325x0
219x023!2g~x0

214x023!1x012#

3~12gx0!2
. ~34!
t
d

uc

ne

in
gh-
eld
x-
he
Fluctuations of the order parameterQ0a , which describes
the overlap of theath replica with the target state, migh
affect the free energy density. This effect was investigate
@1#, where bilinear termsfa(k)f0(2k) in the field theory
were taken into account. The result of this consideration
that the correction of the free energy density due to the fl
tuations reads

S f

nD
cor

5
e0ggs

~12gx0!~12gs!
. ~35!

e0 is a small parameter of a perturbation expansion defi
by
in

is
-

d

e05
1

N K (
i , j

d~r i
a2r j

a!d~r i
02r j

0!L
th

. ~36!

The thermal expectation value in Eq.~36! is the number of
contacts different foldsa and the target configuration have
common. The overlap is mainly due to the contacts of nei
boring monomers which is neglected in the mean-fi
theory forQ0a and might become important when the fle
ibility of the chain increases. The overall free energy is t
sum of Eqs.~35! and ~34!
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f

n
5C~x0!2

4g2C~x0!~n2x0!

3~12gx0!2
2

4C~x0!ggs

3~12gx0!~12gs!

2
4g2C~x0!@3g2~x0

325x0
219x023!2g~x0

214x023!1x012#

3~12gx0!2
1

e0ggs

~12gx0!~12gs!
. ~37!

This expression for the free energy has to be maximized with respect to the one-step replica symmetry breaking parax0.
Therefore we calculate the partial derivative and set the result to zero:

] f /n

]x0
5C8~x0!2

4g2C8~x0!x0

3~12gx0!2
2

4g2C~x0!

3 F 1

~12gx0!2
1

2gx0

~12gx0!3G2
4C8~x0!ggs

3~12gx0!~12gs!
2

4C~x0!g2gs

3~12gx0!2~12gs!

1
e0g2gs

~12gx0!2~12gs!
2

4g2C8~x0!@3g2~x0
325x0

219x023!2g~x0
214x023!1x012#

3~12gx0!2

1
4g2C~x0!@3g3~x0

329x016!2g2~9x0
2234x0133!1gx021#

3~12gx0!3
50, ~38!
ol
o

-

s
ca
r

ith
re

ve
o

a

e
a
r

d

e
-
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r

-
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rent
as
with C8(x0)5]C(x0)/]x0. Due to the logarithmic terms in
C(x0), this is a transcendent equation. So the general s
tion for x0 is unknown. For our purpose, however, we do n
need to know the solution forx0, since we are mainly inter
ested in calculating the temperatureTc at which a transition
from the disordered phase to the frozen phase of the con
ered system occurs. At this freezing transition the repli
start to form groups, which means thatx0 becomes smalle
than 1. Consequently at the transition point we getx0(Tc)
51. Considering Eq.~38! at T5Tc for small interaction pa-
rametersx ~i.e., x/T,,1) yields

s2
2x2r2

Tc
2

2
32x2

3Tc
2

s2
32x2r2

3Tc
2

lnS 2x

Tc
D

2
16x2r2s

3TcTs
1O~x3!50. ~39!

The restriction to only small interactions is consistent w
the fact that terms of higher order in the field theory a
neglected. The analysis of Eq.~39! clearly shows that the
critical temperatureTc increases for decreasing selecti
temperaturesTs , which is in contrast to the dependence
Tc on Ts calculated in@1#. Though Eq.~39! cannot be solved
analytically, it can be solved numerically in order to plot
phase diagram.

It is interesting to consider the limit of a high selectiv
temperatureTs in Eq. ~39!, which represents the case of
random copolymer. It is well known that random copolyme
show a finite freezing temperatureTc

r , which was calculated
by Sfatoset al. @10# with a similar formalism than presente
in this work. Like in @1# Sfatoset al. @10# made a quadratic
approximation in the fieldf as pointed out above. It can b
seen from Eq.~39! that considering infinite selective tem
peraturesTs gives a finiteTc

r .0 depending on the interac
tion parameterx, the densityr, and the flexibility paramete
s.
u-
t

id-
s

f

s

It is important to mention that Eq.~39! only delivers a
solution for the transition temperatureTc if 2x/Tc is not too
small. On the other hand, our theory only is valid if
2x/Tc is not too big i.e., at least smaller than 1. It is, how
ever, easy to show that Eq.~39! gives a solution for a wide
range of2x/Tc . Equation~39! is equivalent to

2x

Tc
5expS 3sTc

2

32x2r
2

6

32
2

s

r2
2

sTc

2Ts
D . ~40!

To ensure that2x/Tc is smaller than 1, which is necessa
since the theory is based on an expansion with respect
2x/Tc , the argument of the exponential function in Eq.~40!
has to be negative. This implies

3sTc
2

32x2r
,

6

32
1

s

r2
1

sTc

2Ts
. ~41!

All in all we get

1.
x2

Tc
2
.

3s

32s16r2116r2sTc /Ts

, ~42!

which is satisfied in a wide range of2x/Tc even for smalls,
since the right hand side vanishes ass goes to zero.

In order to complete the phase diagram of our conside
system we have to compare the free energy in the diffe
phases. In@1# the free energy density of the native state w
calculated as

F522br/~122bsr!2s,

Ts.22xr52
3

16
b/~rbs

2!@121/~2bsr!#2s,

Ts,22xr. ~43!
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FIG. 1. Phase diagram for a heteropolyme
chain with a selected sequence with the para
eters of real temperature and selective or po
merization temperature in arbitrary units.
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A phase transition in the sequence space of the monome
the inhomogeneous target conformation was observed aTs
5Tf522xr, which is analogous to the ferromagneti
paramagnetic transition in a ferromagnet@1#. This means that
the two kinds of monomers A and B form domains of equ
monomers when synthezised. If the protein is for exam
exposed to water, it will establish a hydrophobic core an
hydrophilic surface belowTf .

The comparison of the free energy density of the nat
state aboveTf , Eq. ~43!, and of the frozen globule, Eq.~37!
at T5Tc , which impliesx051, gives the transition tempera
ture in sequence spaceTs

c between the native state and th
frozen globule. Note thatTs

c , which can be calculated nu
merically, is independent of the temperature in real spa
since the entropy of both the native state and frozen glob
vanishes.

The transition line between the disordered globule and
native state can be calculated in the neighborhood of
frozen globule, which means that the free energy densitie
the native state aboveTf , Eq. ~43! and of the disordered
globule, Eq.~37!, for x051 are equal.

Below the temperatureTf the free energy density of th
disordered globule can be obtained to be@1#

f 52
3

16r2 S 1

b
22r D 2

. ~44!

Comparing this free energy density with the one for the
tive state below the sequence space temperatureTf one ob-
tains a transition line for low real temperatures and seque
space temperatures defined by@1#

T}Ts
2 . ~45!

The results are summarized in the phase diagram give
Fig. 1.

The line denoted byTs
c is the transition line from the

frozen globule to the native state, whereas theTc line repre-
sents the transition between the disordered globule and
frozen globule aboveTs

c . The part of this line belowTs
c

indicates a first-order transition to the native state. This tr
sition is of first order since there is a entropy differen
on

l
le
a

e

e,
le

e
e
of

-

ce

in
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between the disordered globule and the single native s
Another first-order transition@1# occurs between the disor
dered globule and the native state below the line denoted
Tf . This Tf line represents the ferromagnetic like transiti
within the native state in sequence space. The dotted ver
line labeledTc

r is the asymptote for theTc transition line in
the limit of high selective temperaturesTs , which creates a
random copolymer.

This phase diagram is qualitatively different in one asp
from the phase diagram presented in@1#, which was calcu-
lated within the Gaussian approximation of the field Ham
tonian. The major difference is that due to thef4 correction
in the field Hamiltonian the freezing temperatureTc for the
transition between the disordered and the frozen globule
creases with an increasing selective temperature, whe
within the Gaussian approximation@1# Tc is slightly increas-
ing with an increasing selective temperature. This is in
cordance with the intuitive understanding which sugge
that the freezing temperature increases as the selective
perature decreases, since the sequence becomes mo
dered by lowering the selective temperature. We note
the very weak dependence ofTc on selective temperatur
observed in@1# was due to fluctuations in the order param
eter Qab that physically take into account the fact that a
conformations share same set of local~along the chain! con-
tacts~the relative contribution of local contacts is given b
parametere0). The slight decrease ofTc at lower selective
temperature was due to the fact that sequence selectio
duced some short-range correlation, making the chain m
homopolymer like. We note that neglect of fluctuations
Qab in the Gaussian approximation~i.e., setting e050)
leads to the independence ofTc on selective temperature
The reason for this is simple: in the Gaussian approxima
optimization of sequences to fit the target conformation d
not induce any correlations in sequencesT.Tf other than
related to contacts present in the target conformation~see
below!. Since the structural overlap between the native s
and any of the frozen conformations is small, in the therm
dynamic limit ~because of the one-step RSB solution f
Q0a) the sequences, in the Gaussian approximation, are
fectively random from the point of view of freezing int
random conformations: hence, the independence ofTc on
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selective temperature, apart from local correlation effe
~governed bye0), in this approximation. When higher-orde
terms inf are included, the situation changes as seque
fluctuations are treated more consistently.~This is usual—
departure from the Gaussian approximation allows us
properly take into account fluctuations.! Apparently these se
quence fluctuations affect the freezing transition as see
the phase diagram.
ts

ce

o

in

In the previous section it was provend that there is
two-step replica symmetry breaking in the Gaussian appr
mation. There, however, might be a break of the replica sy
metry of higher order if one goes beyond the Gaussian
proximation, which might have an effect on the pha
diagram presented here. This will be investigated in fut
work.
function

e can be

q.

here
V. SEQUENCE CORRELATION FUNCTION

Since the monomer sequence of the chain is selected and not random within our model, the sequence correlation
is an important quantity to study. It is defined as

^s ls l 1k&av5
1

Z̃
(
$s i %

s ls l 1k expS 2
H0~$s i%!

Ts
D . ~46!

Here^•••&av represents the average over all sequences with a fixed conformation of the chain. This expectation valu
rewritten as

^s ls l 1k&av5
1

Z̃
(
$s i %

s ls l 1kexpFbsE dR1E dR2(
i

s id~r i
02R1!U~R12R2!(

j
s jd~r j

02R2!G . ~47!

Introducing a field theory by performing a Hubbard-Stratonovich transformation the second exponential function in E~47!
becomes

E Dc~R!expF2
1

4bs
E dR1E dR2c~R1!U21~R12R2!c~R2!1E dR c~R!(

i
s id~r i

02R!G . ~48!

Performing the trace over$s i% and implementing Eq.~48! into Eq. ~47! yields

^s ls l 1k&av5
1

Z̃
E Dc~R!expF2

1

4bs
E dR1E dR2

3c~R1!U21~R12R2!c~R2!1 (
i 5 l ,l 1k

lnFsinhS E dR c~R!d~r i
02R! D G

1 (
iÞ l ,l 1k

lnFcoshS E dRc~R!d~r i
02R! D G G . ~49!

Developing ln(sinh) and ln(cosh) up to second order in the fieldc one obtains

^s ls l 1k&av'
1

Z̃
E DcE dR1E dR2c~R1!c~R2!d~r l

02R1!d~r l 1k
0 2R2!expF2

1

4bs
E dR1E dR2

3c~R1!U21~R12R2!c~R2!1
1

6 (
i 5 l ,l 1k

c~R1!c~R2!d~r i
02R1!d~r i

02R2!

1
1

2 (
iÞ l ,l 1k

c~R1!c~R2!d~r i
02R1!d~r i

02R2!G . ~50!

Including terms of higher order in the fieldc like we did in the previous section is not recommended at this point, since
it just makes things more complicated and does not give any deeper insights.

The next step is to make a field transformation from the Hubbard-Stratonovich fieldc to the fieldf defined in Eq.~10!.
Furthermore, we assume that the short-ranged potentialU is a d function. Then Eq.~50! becomes
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^s ls l 1k&av'
1

Z̃
E Df4bs

2E dR1E dR2f~R1!f~R2!d~r l
02R1!d~r l 1k

0 2R2!expF2bsE dR f2~R!

1
2

3
bs

2 (
i 5 l ,l 1k

E dR1E dR2f~R1!f~R2!d~r i
02R1!d~r i

02R2!

12bs
2 (

iÞ l ,l 1k
E dR1E dR2f~R1!f~R2!d~r i

02R1!d~r i
02R2!G . ~51!

The functional integral on the right hand side of Eq.~51! only has a contribution ifr l
05r l 1k

0 which means that the monome
l and l 1k form a native contact. In particular we get

^s ls l 1k&av5
2bsA124bs

S 12
4

3
bsD (3/2) d~r l

02r l 1k
0 !. ~52!

For a weakly interacting system, which means smallbs , this equation reduces to

^s ls l 1k&av52bsd~r l
02r l 1k

0 !52
2x

Ts
d~r l

02r l 1k
0 !. ~53!

This indicates that there is a correlation between the monomers that form a native contact, which is proportional to the
of interaction and inversely proportional to the temperature in sequence space. Note that Eq.~52! is only valid for a sufficiently
small interaction parameterbs , since our theory breaks down for too strong monomer-monomer interactions.
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VI. CONCLUSION

In the present paper we studied the phase diagram
two-letter heteropolymer with selected sequences, which
good analytical model for proteins. The same major pha
as in @1#, @21#, and @22#—disordered, frozen, and targe
states—were found.

The sequence of the monomers was treated as a fr
disorder. To deal with this problem the replica trick w
employed. We showed that a one-step replica symm
breaking scheme like was applied in@1# is appropriate to
solve the problem. The physical meaning of this result is t
there exists a sharp transition into the native state.

Furthermore, to calculate the phase diagram we went
yond a Gaussian approximation, which resulted in a qua
tive change of the phase diagram compared to that give
@1#. As presented in the phase diagram the transition betw
the disordered phase and the native state is thermodyn
cally of first order, which is due to the selection of the mon
mers. For higher selective temperaturesTs.Ts

c the selection
is much weaker and we get a transition of second order. T
result is consistent with experiments which show that
formation of the molten globular state occurs as a first-or
transition@23,24# in contrast to the behavior of random s
quences@25#. As was mentioned in@1# for the kinetical ac-
cessibility of the native state it is important that this state
accessible from the disordered state for temperatures a
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the freezing temperatureTc
r for a random copolymer. In the

phase diagram presented in@1# the native state is accessib
in this sense, though it is required that the selective temp
ture be a certain amount smaller thanTs

c . The calculations in
this paper, however, show that the native state is even ac
sible for all selective temperatures belowTs

c .
The phase diagram also shows a transition lineTf , which

represents a transition in sequence space@1#. This transition
is analogous to a ferromagnetic-paramagnetic transition.
low a certain temperatureTf in sequence space the two kind
of monomers tend to form domains. For selective tempe
turesTs,Tf there is another transition line between the d
ordered and the native state. This transition line suggests
the smaller the selective temperature, the smaller the tra
tion temperature, which can be explained by the fact that
sequence forms domains belowTf , so that the sequence de
sign process is disturbed.

Moreover, a sequence correlation function along the ch
depending on the selective temperature in sequence s
and the strength of the interaction between the monom
was calculated. The result suggests that in the sequence
sign scheme employed here special emphasis is laid on
native contacts. It also has practical applications for find
the native contacts in a protein. Our sequence correla
function implies that those pairs of monomers are candida
for forming a native contact which have a peak in this c
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relation function calculated within a superfamily of protein
Therefore it can be confirmed that mutations at monom
sites which form a native contact are correlated@26#. The
sequence correlation function can be used for practical ap
cations in protein analysis. In a future work we are going
study our result on real proteins@27#.
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